Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Exp Mol Pathol ; 136: 104889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316203

RESUMO

Pruritus, also known as itching, is a complex sensation that involves the activation of specific physiological and cellular receptors. The skin is innervated with sensory nerves as well as some receptors for various sensations, and its immune system has prominent neurological connections. Sensory neurons have a considerable impact on the sensation of itching. However, immune cells also play a role in this process, as they release pruritogens. Disruption of the dermal barrier activates an immune response, initiating a series of chemical, physical, and cellular reactions. These reactions involve various cell types, including keratinocytes, as well as immune cells involved in innate and adaptive immunity. Collective activation of these immune responses confers protection against potential pathogens. Thus, understanding the molecular and cellular mechanisms that contribute to pruritus in host skin is crucial for the advancement of effective treatment approaches. This review provides a comprehensive analysis of the present knowledge concerning the molecular and cellular mechanisms underlying itching signaling in the skin. Additionally, this review explored the integration of these mechanisms with the broader context of itch mediators and the expression of their receptors in the skin.


Assuntos
Prurido , Pele , Humanos , Prurido/genética , Prurido/metabolismo , Queratinócitos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
2.
J Allergy Clin Immunol ; 153(4): 1155-1161.e4, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272373

RESUMO

BACKGROUND: Pathogenic variants in filaggrin (FLG) are associated with an increased risk of atopic dermatitis (AD). OBJECTIVE: We evaluated the influence of FLG variants on the effectiveness of dupilumab treatment in AD. METHODS: This prospective observational study included adult AD patients treated with dupilumab from the BioDay registry. FLG was analyzed with single-molecule molecular inversion probe-targeted sequencing. Novel mutations were confirmed by Sanger sequencing. Eczema Area and Severity Index (EASI), Investigator Global Assessment (IGA), numeric rating scale (NRS) pruritus, Dermatology Quality of Life Index (DLQI), and Patient-Oriented Eczema Measure (POEM) were assessed at baseline and at weeks 16 and 52. The study was registered at ClinicalTrials.gov as NCT03549416. RESULTS: Genetic analysis of the 285 included patients showed biallelic pathogenic variants (FLG-/-) in 41 (14%), monoallelic pathogenic variants (FLG-/+) in 64 (23%), and wild-type alleles (FLG+/+) in 180 patients (63%). Three novel pathogenic variants were found. We observed no clinically relevant differences in EASI, IGA, NRS pruritus, DLQI, or total POEM scores for patients with and without pathogenic FLG variants at all time points. The FLG-/- group showed significantly higher POEM flaking and dryness scores at week 16 (P < .001 and P = .002, respectively) and week 52 (P < .001 and P = .016, respectively) compared to FLG+/+ as well as significant differences compared to FLG-/+, while differences in delta scores were nonsignificant. CONCLUSION: The effectiveness of dupilumab treatment in AD patients was not influenced by pathogenic FLG variants. However, patients with biallelic pathogenic FLG variants tended to have drier skin before and during dupilumab treatment compared to patients with monoallelic pathogenic variants or wild-type alleles.


Assuntos
Anticorpos Monoclonais Humanizados , Dermatite Atópica , Eczema , Adulto , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/patologia , Proteínas Filagrinas , Prurido/tratamento farmacológico , Prurido/genética , Qualidade de Vida , Índice de Gravidade de Doença , Resultado do Tratamento
4.
Cell Rep ; 42(12): 113433, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38029739

RESUMO

IL-31 receptor blockade suppresses pruritus of atopic dermatitis. However, cell-type-specific contributions of IL-31 receptor to itch, its expression mechanism, and the downstream signaling pathway to induce itch remain unknown. Here, using conditional knockout mice, we demonstrate that IL-31-induced itch requires sensory neuronal IL-31 receptor and STAT3. We find that IL-31 receptor expression is dependent on STAT3 in sensory neurons. In addition, pharmacological experiments suggest that STAT3 activation is important for the itch-inducing signaling downstream of the IL-31 receptor. A cutaneous IL-31 injection induces the nuclear accumulation of activated STAT3 first in sensory neurons that abundantly express IL-31 receptor and then in other itch-transmitting neurons. IL-31 enhances itch induced by various pruritogens including even chloroquine. Finally, pruritus associated with dermatitis is partially dependent on sensory neuronal IL-31 receptor and strongly on sensory neuronal STAT3. Thus, sensory neuronal STAT3 is essential for IL-31-induced itch and further contributes to IL-31-independent inflammatory itch.


Assuntos
Dermatite Atópica , Prurido , Animais , Camundongos , Dermatite Atópica/metabolismo , Expressão Gênica , Camundongos Knockout , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo
5.
BMC Res Notes ; 16(1): 348, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007440

RESUMO

OBJECTIVES: Animal models of skin disease are used to evaluate therapeutics to alleviate disease. One common clinical dermatological complaint is pruritus (itch), but there is a lack of standardization in the characterization of pre-clinical models and scratching behavior, a key itch endpoint, is often neglected. One such model is the widely used imiquimod (IMQ) mouse model of psoriasis. However, it lacks characterized behavioral attributes like scratching, nor has widely expanded to other species like rats. Given these important attributes, this study was designed to broaden the characterization beyond the expected IMQ-induced psoriasis-like skin inflammatory skin changes and to validate the role of a potential therapeutic agent for pruritus in our genetic rat model. The study included female Wistar rats and genetically modified knockin (humanized proteinase-activated receptor 2 (F2RL1) female rats, with the widely used C57BL/6 J mice as a methodology control for typical IMQ dosing. RESULTS: We demonstrate that the IMQ model can be reproduced in rats, including their genetically modified derivatives, and how scratching can be used as a key behavioral endpoint. We systemically delivered an anti-PAR2 antibody (P24E1102) which reversed scratching bouts-validating this behavioral methodology and have shown its feasibility and value in identifying effective antipruritic drugs.


Assuntos
Antipruriginosos , Psoríase , Camundongos , Ratos , Feminino , Animais , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Imiquimode/efeitos adversos , Ratos Wistar , Camundongos Endogâmicos C57BL , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Prurido/genética , Pele , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Modelos Animais de Doenças
6.
EMBO Rep ; 24(10): e56098, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522391

RESUMO

A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.


Assuntos
Receptores da Bombesina , Medula Espinal , Humanos , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Medula Espinal/metabolismo , Ácido Glutâmico/metabolismo , Dopamina/metabolismo , Prurido/genética , Prurido/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
7.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995996

RESUMO

BACKGROUND: Bile salt export pump (ABCB11) deficiency [Progressive familial intrahepatic cholestasis (PFIC2)] is the most common genetic cause of PFIC and is associated with pruritus and progressive liver disease. Surgical biliary diversion or pharmacological [ileal bile acid transporter inhibitor (IBATi)] approaches can be used to block the recirculation of bile acids to the liver. There is a paucity of detailed data on the natural history and, in particular, the longitudinal evolution of bile acid levels to predict treatment response. Cross-sectional data from large international consortia suggested a maximum cutoff value of bile acids after the intervention to predict a successful outcome. METHODS: This retrospective, single-center, cohort study included all patients with confirmed biallelic pathogenic ABCB11 genotype PFIC2 treated at our institution with ≥2 years follow-up. The outcomes of interventions and predictors of long-term health were analyzed. RESULTS: Forty-eight cases were identified with PFIC2. Eighteen received partial external biliary diversion (PEBD) surgery, and 22 patients underwent liver transplantation. Two patients developed HCC and 2 died. Improved survival with native liver was closely associated with genotype, complete normalization of serum bile acids following PEBD, and alleviation of pruritus. Persistence of mild-to-moderate elevation of bile acids or a secondary rise following normalization was associated with liver disease progression and led to transplantation, suggesting that any prolonged elevation of bile acids worsens the chance of native liver survival. Higher-grade fibrosis at the time of PEBD was not associated with reduced long-term native liver survival. Patients with PFIC2 benefit from PEBD even at a stage of advanced fibrosis. CONCLUSION: Serum bile acid levels are an early predictor of treatment response and might serve as the gold standard in the evaluation of novel therapies including IBATi.


Assuntos
Carcinoma Hepatocelular , Colestase , Neoplasias Hepáticas , Humanos , Estudos Retrospectivos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Estudos de Coortes , Carcinoma Hepatocelular/complicações , Estudos Transversais , Resultado do Tratamento , Neoplasias Hepáticas/complicações , Ácidos e Sais Biliares , Cirrose Hepática/patologia , Colestase/complicações , Prurido/complicações , Prurido/genética
8.
Allergy ; 78(6): 1570-1584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876522

RESUMO

BACKGROUND: Spinal astrocytes contribute to chronic itch via sensitization of itch-specific neurons expressing gastrin-releasing peptide receptor (GRPR). However, whether microglia-neuron interactions contribute to itch remains unclear. In this study, we aimed to explore how microglia interact with GRPR+ neurons and promote chronic itch. METHODS: RNA sequencing, quantitative real-time PCR, western blot, immunohistochemistry, RNAscope ISH, pharmacologic and genetic approaches were performed to examine the roles of spinal NLRP3 (The NOD-like receptor family, pyrin-containing domain 3) inflammasome activation and IL-1ß-IL1R1 signaling in chronic itch. Grpr-eGFP and Grpr KO mice were used to investigate microglia-GRPR+ neuron interactions. RESULTS: We observed NLRP3 inflammasome activation and IL-1ß production in spinal microglia under chronic itch conditions. Blockade of microglial activation and the NLRP3/caspase-1/IL-1ß axis attenuated chronic itch and neuronal activation. Type 1 IL-1 receptor (IL-1R1) was expressed in GRPR+ neurons, which are essential for the development of chronic itch. Our studies also find that IL-1ß+ microglia are localized in close proximity to GRPR+ neurons. Consistently, intrathecal injection of IL1R1 antagonist or exogenous IL-1ß indicate that the IL-1ß-IL-1R1 signaling pathway enhanced the activation of GRPR+ neurons. Furthermore, our results demonstrate that the microglial NLRP3/caspase-1/IL-1ß axis contributes to several different chronic itches triggered by small molecules and protein allergens from the environment and drugs. CONCLUSION: Our findings reveal a previously unknown mechanism in which microglia enhances the activation of GRPR+ neurons through the NLRP3/caspase-1/IL-1ß/IL1R1 axis. These results will provide new insights into the pathophysiology of pruritus and novel therapeutic strategies for patients with chronic itch.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , Receptores da Bombesina/metabolismo , Prurido/genética , Prurido/metabolismo , Doença Crônica , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Caspases , Camundongos Endogâmicos C57BL
10.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674561

RESUMO

Atopic dermatitis (AD) is a common skin disease caused by genetic and environmental factors. However, the mechanisms underlying AD development remain unclear. In this study, we examined the genetic factors contributing to the onset of itch-associated scratching in different strains of mice. Interleukin-31 (IL-31) induces severe scratching and dermatitis in mice. However, the site of action of IL-31 remains unclear. Cutaneous IL-31 and IL-31 receptor A (IL-31RA) mRNAs in the dorsal root ganglion (DRG) are expressed exclusively in the AD model, i.e., NC/Nga mice. Here we evaluated the effects of repeated administration of IL-31 on the scratching behavior in NC/Nga, BALB/c, and C57BL/6 mice. The results showed that repeated administration of IL-31 significantly increased itch-associated scratching (LLS) behavior in the three strains of mice. One hour after an intravenous IL-31 injection, BALB/c mice showed alloknesis-like behavior. Mite infestation and IL-31 administration triggered itchy skin, increased LLS counts and DRG neuronal IL-31RA expression, and eventually caused dermatitis. The dermatitis severity and LLS counts induced by mite infestation and IL-31 administration were in the order NC/Nga > BALB/c > C57BL/6. In conclusion, neuronal IL-31RA expression in the DRG was the most important genetic factor affecting the severity of LLS and dermatitis in mice.


Assuntos
Dermatite Atópica , Receptores de Interleucina , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infestações por Ácaros/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Pele/metabolismo , Receptores de Interleucina/genética
11.
Pain ; 164(1): 98-110, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507377

RESUMO

ABSTRACT: Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represents a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators. Yet, the role of TRPC3 in acute and chronic itch is still not well defined. Here, we show that, among mouse trigeminal ganglion (TG) neurons, Trpc3 mRNA is predominantly expressed in nonpeptidergic small diameter TG neurons of mice. Moreover, Trpc3 mRNA signal was present in most presumptively itch sensing neurons. TRPC3 agonism induced TG neuronal activation and acute nonhistaminergic itch-like and pain-like behaviors in naive mice. In addition, genetic deletion of Trpc3 attenuated acute itch evoked by certain common nonhistaminergic pruritogens, including endothelin-1 and SLIGRL-NH2. In a murine model of contact hypersensitivity (CHS), the Trpc3 mRNA expression level and function were upregulated in the TG after CHS. Pharmacological inhibition and global knockout of Trpc3 significantly alleviated spontaneous scratching behaviors without affecting concurrent cutaneous inflammation in the CHS model. Furthermore, conditional deletion of Trpc3 in primary sensory neurons but not in keratinocytes produced similar antipruritic effects in this model. These findings suggest that TRPC3 expressed in primary sensory neurons may contribute to acute and chronic itch through a histamine independent mechanism and that targeting neuronal TRPC3 might benefit the treatment of chronic itch associated with ACD and other inflammatory skin disorders.


Assuntos
Dermatite Alérgica de Contato , Prurido , Animais , Camundongos , Dermatite Alérgica de Contato/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo
12.
Exp Dermatol ; 32(1): 30-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36134503

RESUMO

Prurigo nodularis (PN), characterized by inevitable chronicity and severe pruritus, is most frequently associated with atopy compared with other origins. However, the skin transcriptomic profiling of PN arising from atopic dermatitis (AD), so-called atopic PN (APN), remains unclear. We sought to explore the cutaneous transcriptome of APN with severe pruritus and compare it with classic AD. RNA sequencing was performed on the lesional skin from 13 APN to 11 AD patients with severe pruritus (itch numerical rating scale score ≥ 7) and normal skin from 11 healthy subjects. Quantitative real-time polymerase chain reaction and immunochemistry were used for validation. We detected 1085 and 1984 differentially expressed genes (DEGs) in lesional APN skin and lesional AD skin versus normal skin, respectively. In total, 142 itch/inflammation-related DEGs were identified. Itch/inflammation-related DEGs, such as IL-6, IL-10, IL-13, oncostatin M, and IL-4 receptor, had elevated gene transcript levels in both diseases. The itch/inflammation-related DEGs that increased only in APN were mainly neuroactive molecules, while many inflammatory mediators such as T helper 22-related genes were found to be increased only in AD. Both disorders showed mixed Th1/Th2/Th17 polarisation and impaired skin barrier. In contrast to AD, M1/M2 macrophage activation, tumor necrosis factor production, fibrosis, revascularization and neural dysregulation are unique features of APN. The study findings broaden our understanding of the pathogenesis underlying APN, which provides insights into novel pathogenesis with potential therapeutic implications.


Assuntos
Dermatite Atópica , Prurigo , Humanos , Transcriptoma , Prurigo/genética , Prurigo/patologia , Prurido/genética , Dermatite Atópica/complicações , Dermatite Atópica/genética , Dermatite Atópica/patologia , Análise de Sequência de RNA , Inflamação/genética
13.
J Invest Dermatol ; 143(5): 812-821.e3, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36410425

RESUMO

Type I cannabinoid receptor (CB1R) has been reported to exhibit favorable anti-inflammation and antipruritus effects against inflammation-based skin diseases, but the specific mechanism remains to be explored. In this study, we found that the activation of CB1R significantly relieved the scratching behavior and skin inflammation in a psoriatic mouse model, whereas CB1R antagonist aggravated these symptoms. Because the expression of CB1R was abundant in dorsal root ganglia, we constructed mice with conditional CB1R knockout in primary sensory neurons and found that imiquimod-induced psoriasiform inflammation and itch were both worsened in CB1R-conditional knockout mice. Next, we observed that the CB1R was mostly located in peptidergic neurons, and deletion of CB1R in primary sensory neurons promoted the production and release of substance P to the skin tissue. Furthermore, the elevated substance P in the skin affected the activation of extracellular signal‒regulated kinase in keratinocytes and induced the accumulation of mast cells in the dermis. Finally, we showed that blocking the substance P signal significantly alleviated the exacerbation of psoriasiform inflammation and itch caused by imiquimod in CB1R-conditional knockout mice. Together, our work reveals that CB1R in sensory neurons plays a key role in psoriasiform skin inflammation and pruritus by regulating substance P expression.


Assuntos
Eczema , Psoríase , Camundongos , Animais , Receptores de Canabinoides/metabolismo , Imiquimode , Substância P/metabolismo , Prurido/genética , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Psoríase/genética , Psoríase/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
14.
J Invest Dermatol ; 143(1): 142-153.e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049541

RESUMO

Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch through transient receptor potential channels signaling are poorly understood. In this study, we show that genetic deletion or pharmacological antagonism of TRPV4 attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several microRNAs, including the miR-203b-3p, which induced a calcium ion response in rodent dorsal root ganglion neurons and scratching behavior in mice through 5-HTR2B activation and the protein kinase C‒dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular microRNA that can behave as an itch promoter through 5-HTR2B and TRPV4.


Assuntos
MicroRNAs , Prurido , Receptor 5-HT2B de Serotonina , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Simulação por Computador , Gânglios Espinais , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Receptor 5-HT2B de Serotonina/genética , Receptor 5-HT2B de Serotonina/metabolismo
15.
J Invest Dermatol ; 143(2): 264-272.e3, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36075451

RESUMO

Scratching and scratch-induced injuries, including neuroanatomical alterations, are key characteristics of chronic pruritus entities of different origins. The aim of this study was to link gene expression (array hybridization, qPCR) with DNA methylation (array hybridization) and neuroanatomy (PGP9.5 staining) in chronic nodular prurigo (CNPG), atopic dermatitis (AD), brachioradial pruritus (BRP), and matched healthy controls. Specific signatures of gene expression and DNA methylation clearly discriminated pruritic lesional skin from nonpruritic skin in CNPG and from healthy skin of volunteers, respectively. Although intraepidermal nerve fiber density was indiscriminately reduced, the level of epidermal branching, assessed by a semiquantitative pattern analysis, differentiated the entities (CNPG > BRP > AD). Correspondingly, repellent SEMA3A showed the highest expression in AD, whereas axonal growth-promoting nerve GF was most prominent in CNPG and BRP. Overexpression of genes for nerve fiber regeneration (NELL2/NFKB/ARTN) was found in AD and CNPG but not in BRP. Our findings suggest that differential branching patterns rather than mere innervation density separate chronic itch conditions and reflect disease-specific local expression profiles. In pruritic dermatoses (AD and CNPG), nerve injury and subsequent sprouting may primarily result from chronic scratching, whereas genuine neuropathy is expected to underlie BRP.


Assuntos
Dermatite Atópica , Prurigo , Humanos , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Prurigo/genética , Transcriptoma , Epigenômica , Neuroanatomia , Prurido/genética
16.
EMBO Rep ; 24(2): e54313, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36524339

RESUMO

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.


Assuntos
Prurido , RNA Longo não Codificante , Células Receptoras Sensoriais , Animais , Camundongos , Histamina , Prurido/genética , RNA Longo não Codificante/genética , Sensação
17.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 404-416, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514220

RESUMO

The dry skin tortures numerous patients with severe itch. The transient receptor potential cation channel V member 1 (TRPV1) and A member 1 (TRPA1) are two essential receptors for peripheral neural coding of itch sensory, mediating histaminergic and nonhistaminergic itch separately. In the dorsal root ganglion, transmembrane protein 100 (TMEM100) is structurally related to both TRPV1 and TRPA1 receptors, but the exact role of TMEM100 in itch sensory coding is still unknown. Here, in this study, we find that TMEM100 + DRG neurons account for the majority of activated neurons in an acetone-ether-water (AEW)-induced dry skin itch model, and some TMEM100 + DRG neurons are colocalized with both TRPA1 and the chloroquine-related Mrgpr itch receptor family. Both the expression and function of TRPA1 channels, but not TRPV1 channels, are upregulated in the AEW model, and specific DRG Tmem100 gene knockdown alleviates AEW-induced itch and rescues the expression and functional changes of TRPA1. Our results strongly suggest that TMEM100 protein in DRG is the main facilitating factor for dry-skin-related chronic itch, and specific suppression of TMEM100 in DRG could be a novel effective treatment strategy for patients who suffer from dry skin-induced itch.


Assuntos
Prurido , Canais de Potencial de Receptor Transitório , Humanos , Gânglios Espinais/metabolismo , Proteínas de Membrana/metabolismo , Prurido/induzido quimicamente , Prurido/genética , Prurido/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Regulação para Cima
18.
J Ethnopharmacol ; 298: 115543, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870683

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In treating atopic dermatitis, multi-mode management is adopted, including trying to avoid the allergens, controlling and preventing secondary infections, and using drugs to control itching. At present, most of the commonly used anti-pruritic drugs in the clinic are single-target and lead to serious side effects. Many studies have shown that a variety of traditional Chinese medicines have significant anti-inflammatory and anti-pruritic effects, and have the characteristics of multiple components, multiple targets, and multiple effects. AIM OF THE STUDY: The study aimed to explore the anti-inflammatory and anti-pruritic effects of the Chi-Huang Solution in a murine model of Allergic contact dermatitis (ACD). This study considers the effectiveness of the Chi-Huang Solution for external use on skin to provide an experimental basis for the clinical development and application of Chinese medicine and related preparations for Canine atopic dermatitis (CAD). MATERIALS AND METHODS: Forty-two male SPF C57BL/6 mice were randomly divided into control group (n = 6), ACD model group (n = 6), HAC control group (n = 6), and 4 Chi-Huang Solution groups (n = 6 in each group). With SADBE induce the murine model of ACD chronic pruritus, and initially evaluate whether the model is successful by counting scratching behavior, measuring the skin fold thickness and skin lesion score within 1 h. After treating the ACD model mice with deionized water, HAC, 1CH, 2CH, 3CH, and 4CH for 7 days, behavioral changes were used to evaluate the anti-pruritic effect. The skin fold thickness, skin lesion score, and spleen index were used to evaluate the anti-inflammatory effect of the Chi-Huang Solution. H.E. staining was used for the epidermal thickness measurement and pathological evaluation. RT-qPCR was used to analyze the mRNA expression of related inflammatory factors such as IL-1ß, TNF-α, IL-33, IL-4, IL-17A, CXCL10, and its receptor CXCR3 in the skin of the lesion site, as well as to detect the mRNA expression of pruritus-related genes such as TRPV1, TRPA1, and GRP in DRG. RESULTS: After the treatment of low-dose (0.1 g/mL) and medium-dose (0.2 g/mL) Chi-Huang Solution, the scratching times both decreased significantly (P < 0.05), meanwhile the medium-dose Chi-Huang Solution had an obvious effect on reducing scratches/scab score (P < 0.05). Moreover, no matter what dose it takes, all Chi-Huang Solution can alleviate the epidermal thickening (P < 0.05) and the infiltration of mast cells in the ACD murine model of ACD. It is worth mentioning that the count of mast cells in the dermis was significantly down-regulated after the treatment of medium-dose Chi-Huang Solution (P < 0.005). Furthermore, Chi-Huang Solution can significantly down-regulate the mRNA expression of related inflammatory factors in the skin, and reduce the mRNA expression of pruritus-related genes, such as TRPA1, TRPV1, and GRP in the spinal cord. CONCLUSIONS: The results indicated that Chi-Huang Solution for external use exhibits significant anti-inflammatory and anti-pruritic effects on SADBE-induced ACD chronic pruritus murine models. Chi-Huang Solution might emerge as an effective drug for the treatment of CAD and high-dose Chi-Huang Solution (0.4 g/ml) has better comprehensive effects.


Assuntos
Anti-Inflamatórios , Antipruriginosos , Dermatite Alérgica de Contato , Animais , Anti-Inflamatórios/uso terapêutico , Antipruriginosos/uso terapêutico , Dermatite Alérgica de Contato/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prurido/genética , Prurido/prevenção & controle , RNA Mensageiro
19.
Nature ; 607(7917): 104-110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732741

RESUMO

Itch triggers scratching, a behavioural defence mechanism that aids in the removal of harmful irritants and parasites1. Chemical itch is triggered by many endogenous and exogenous cues, such as pro-inflammatory histamine, which is released during an allergic reaction1. Mechanical itch can be triggered by light sensations such as wool fibres or a crawling insect2. In contrast to chemical itch pathways, which have been extensively studied, the mechanisms that underlie the transduction of mechanical itch are largely unknown. Here we show that the mechanically activated ion channel PIEZO1 (ref. 3) is selectively expressed by itch-specific sensory neurons and is required for their mechanically activated currents. Loss of PIEZO1 function in peripheral neurons greatly reduces mechanically evoked scratching behaviours and both acute and chronic itch-evoked sensitization. Finally, mice expressing a gain-of-function Piezo1 allele4 exhibit enhanced mechanical itch behaviours. Our studies reveal the polymodal nature of itch sensory neurons and identify a role for PIEZO1 in the sensation of itch.


Assuntos
Canais Iônicos , Prurido , Alelos , Animais , Canais Iônicos/deficiência , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Prurido/genética , Prurido/fisiopatologia , Sensação , Células Receptoras Sensoriais/metabolismo
20.
Nat Commun ; 13(1): 2367, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501343

RESUMO

An excitatory neuron subset in the spinal dorsal horn (SDH) that expresses gastrin-releasing peptide receptors (GRPR) is critical for pruriceptive transmission. Here, we show that glutamatergic excitatory inputs onto GRPR+ neurons are facilitated in mouse models of chronic itch. In these models, neuronal pentraxin 2 (NPTX2), an activity-dependent immediate early gene product, is upregulated in the dorsal root ganglion (DRG) neurons. Electron microscopy reveals that NPTX2 is present at presynaptic terminals connected onto postsynaptic GRPR+ neurons. NPTX2-knockout prevents the facilitation of synaptic inputs to GRPR+ neurons, and repetitive scratching behavior. DRG-specific NPTX2 expression rescues the impaired behavioral phenotype in NPTX2-knockout mice. Moreover, ectopic expression of a dominant-negative form of NPTX2 in DRG neurons reduces chronic itch-like behavior in mice. Our findings indicate that the upregulation of NPTX2 expression in DRG neurons contributes to the facilitation of glutamatergic inputs onto GRPR+ neurons under chronic itch-like conditions, providing a potential therapeutic target.


Assuntos
Células do Corno Posterior , Prurido , Animais , Proteína C-Reativa , Camundongos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Células do Corno Posterior/metabolismo , Prurido/genética , Receptores da Bombesina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...